

Quantum Fourier Transform and Its Application in Shor’s Algorithm

Zhongwei Wang1, *, Xirui Gou2, Ruiqing Fu3, Zhixuan Fu4
1Department of Physics, Nanjing University, Nanjing, 210093, China

2Watkinson School, Hartford, CT, 06115, USA
3Department of Physics, Beihang University, Beijing, 102206, China

4Shanghai Starriver Bilingual School, Shanghai, 201108, China

*Corresponding Author’s E-mail: 171840742@smail.nju.edu.cn

Keywords: Quantum, Fourier Transform, Shor’s Algorithm

Abstract: Quantum Fourier transform (QFT) plays an eminent role in quantum computation. It
creates a superposition of different quantum states, allowing simultaneous calculation, which would
take many steps were the same program implemented on a classical computer. The computational
speed of a quantum computer is thus boosted dramatically. In this article, we explain the application
of QFT in Shor’s algorithm, which was proposed by Peter Shor to factor large integers on quantum
computers. Specifically, the principle and design of quantum Fourier transform are explained. We
stress the subtle distinction between QFT and its inverse. Since former articles did not emphasize it,
we hope it could be a supplement to former articles. Our next work is to verify the existing articles
on executing Shor’s algorithm by conducting two experiments on IBMQ of factoring N = 15 in two
ways (a = 7 and a = 11). We find that the effect of quantum entanglement might be crucial to the
speed boost of factoring large integers in Shor’s algorithm.

1. Introduction
Fourier transform is one of the most powerful tools in math and physics, eluding almost no

theoretical work from the theory of deferent and epicycles proposed in 3rd century BCE, to the
latest theory of solid state physics, signal processing, and optical imaging. Based on the most
simple but also most profound belief that everything can be decomposed into a superposition of
waves of certain pure frequencies, Fourier transform enables us to perceive the unperceivable space
to our naked eyes – the reciprocal space, which is also characterized by a four-vector
(ω, 𝑘𝑘𝑥𝑥,𝑘𝑘𝑦𝑦,𝑘𝑘𝑧𝑧), as opposed to the four-vector (t, x, y, z) which characterizes real space. Owing to
the mighty power of Fourier transform shown in myriad fields of math and physics, there is no
surprise that its quantum version, or rather the discrete version, could also play an eminent role in
quantum computation, such as in quantum phase estimation algorithm [1] for estimating the
eigenvalues of a unitary operator, and in algorithms for hidden subgroup problem [2].

One of the most prominent roles quantum Fourier transform has played in quantum computation
is that in Shor’s algorithm, proposed in 1994. Running on the quantum circuit, Shor’s algorithm can
factor large numbers into the multiplication of two integers in polynomial time O((log𝑁𝑁)𝑘𝑘) [3],
much faster than the classical algorithm which takes up sub-exponential time,
O(𝑒𝑒1.9(log𝑁𝑁)2/3 (log log𝑁𝑁)1/3), at best to factor the same number [4]. The contrast between the two
algorithms will become strikingly stark as N goes up. For example, to factor a 200-digit number N,
it will take a common PC 103 years. However, it would be nearly instantly broken down by Shor’s
algorithm were there an available quantum computer. The reason why factoring large numbers is
crucial is that modern public key cryptography used in internet communication, such as the RSA
scheme [5], is based on the assumption that large integer factorization is computationally intractable.
However, this assumption holds for non-quantum computers, but not for quantum computers.
Consequently, anyone with a quantum computer can pose an immediate threat to the privacy and
security of the Internet nowadays. The efficiency of Shor’s algorithm is attributed to two key

2020 4th International Conference on Computer Engineering, Information Science & Application Technology (ICCIA 2020)

Published by CSP © 2020 the Authors 275

mailto:171840742@smail.nju.edu.cn
https://www.ibm.com/quantum-computing/

elements: quantum Fourier transform and modular exponentiation. The former takes advantage of
quantum superposition to do multiple calculations simultaneously. The latter creates a quantum
entanglement between register A and register B in Figure so that the measuring of register B will
affect that of register A. The explanation will become clear in the latter context.

However, the distinction between quantum Fourier transform and the inverse quantum Fourier
transform is not sufficiently illustrated in the previous research. And most research on Shor’s
algorithm mainly focus on the theoretical basis, not on the specific construction of the circuit. Thus,
we illustrate the distinction between QFT and IQFT both in the formula and circuit design.
Furthermore, this article is dedicated to the specific construction of Shor’s algorithm with the
experiments of factoring N = 15 with a = 7 and a = 11 separately conducted on IBMQ. We also
made a flow chart (See Figure) of Shor’s algorithm, hoping it could make the procedure easier to
understand.

2. QFT and IQFT
Mathematically speaking, quantum Fourier transform is a special case of discrete Fourier

transform in Hilbert space. It projects a vector in Hilbert space to another vector in the same space.

 𝑄𝑄𝑄𝑄𝑄𝑄(|1⟩) = �0⟩ + e𝑖𝑖𝑖𝑖/4�1⟩ + e𝑖𝑖𝑖𝑖/2�2⟩ + e𝑖𝑖3𝑖𝑖/4�3⟩ + e𝑖𝑖𝑖𝑖�4⟩ + e𝑖𝑖5𝑖𝑖/4�5⟩ + e𝑖𝑖3𝑖𝑖/2�6⟩ + e𝑖𝑖7𝑖𝑖/4�7⟩
(1)

𝑄𝑄𝑄𝑄𝑄𝑄(|2⟩) = �0⟩ + e𝑖𝑖𝑖𝑖/2�1⟩ + e𝑖𝑖𝑖𝑖�2⟩ + e𝑖𝑖3𝑖𝑖/2�3⟩ + e𝑖𝑖2𝑖𝑖�4⟩ + e𝑖𝑖5𝑖𝑖/2�5⟩ + ei3π�6⟩ + e𝑖𝑖7𝑖𝑖/2�7⟩ (2)

If state |1⟩ is put in, the output will be a superposition of all states from |0⟩ to |7⟩ with the same
amplitude. But the phase difference between any two adjacent states is eiπ/4. So the frequency of
the output is 1. If state |2⟩ is put in, the amplitude of all possible states is also the same, but the
phase difference between any two adjacent states doubles, namely, the output has a frequency of 2.
If the input is a superposition state, say |1⟩ and |2⟩, then the output is the superposition of the wave
of frequency 1 and the wave of frequency 2. See Figure 1 (4-qubit QFT)

Figure 1 Demonstration of how QFT works

The inverse quantum Fourier transform will do the opposite. It analyzes the periodicity of the
input states and outputs their frequencies. (Generally, the input states have multiple frequency
components.)

𝐼𝐼𝑄𝑄𝑄𝑄𝑄𝑄(�0⟩ + 𝑒𝑒𝑖𝑖𝑖𝑖/4�1⟩ + 𝑒𝑒𝑖𝑖𝑖𝑖/2�2⟩ + 𝑒𝑒𝑖𝑖3𝑖𝑖/4�3⟩ + 𝑒𝑒𝑖𝑖𝑖𝑖�4⟩ + 𝑒𝑒𝑖𝑖5𝑖𝑖/4�5⟩ + 𝑒𝑒𝑖𝑖3𝑖𝑖/2�6⟩ + 𝑒𝑒𝑖𝑖7𝑖𝑖/4�7⟩) = |1⟩
 (3)

𝐼𝐼𝑄𝑄𝑄𝑄𝑄𝑄(|0⟩ + e𝑖𝑖𝑖𝑖/2|1⟩ + e𝑖𝑖𝑖𝑖|2⟩ + e𝑖𝑖3𝑖𝑖/2|3⟩ + e−2𝑖𝑖|4⟩ + ei5π/2|5⟩ + ei3π|6⟩ + ei7π/2|7⟩) = |2⟩ (4)
In general, q-qubit QFT is defined as

UQFT(|x⟩) = 1
Q
∑ 𝜔𝜔xy|y⟩Q−1
y=0 (5)

276

https://www.ibm.com/quantum-computing/

where Q = 2𝑞𝑞, ω is q-th root of unity 𝑒𝑒2𝑖𝑖𝑖𝑖/𝑞𝑞. The definition of IQFT only differs from QFT by
a negative sign in the exponent.

 UIQFT(|x⟩) = 1
Q
∑ 𝜔𝜔−xy|y⟩Q−1
y=0 (6)

3. Realization of QFT and IQFT on IBMQ
3.1 Design of QFT [6]

Figure 2 Circuit of QFT [7]
The circuit of QFT is shown in Figure 2. The quantum gates used in this circuit are the

Hadamard gate, which is designed for creating superposition states and defined as follow.

 𝐻𝐻 = 1
√2
�1 1
1 −1� (7)

And the controlled-Rz gate, which is defined as follow.

 𝑅𝑅𝑚𝑚 = �
1 0
0 e

2πi
2m� � (8)

Assume the input is |x1x2 … xn〉. The first operation of this circuit is to apply the Hadamard
gate to the first qubit, which produces the quantum state.

 1
21/1 (|0〉 + e2πi[0.x1]|1〉) ⊗ |x2 … xn〉 (9)

Note that [𝑥𝑥1𝑥𝑥2 … 𝑥𝑥𝑛𝑛] is the expression for binary number 𝑥𝑥12𝑛𝑛−1 + 𝑥𝑥22𝑛𝑛−2 + ⋯+ 𝑥𝑥𝑛𝑛20, and
⊗ denotes the state product. Then apply the controlled-R2, R3 through Rn gate successively to
the first qubit, producing the state.

 1
21/2 (|0〉 + e2πi[0.x1x2…xn]|1〉) ⊗ |x2 … xn〉 (10)

By the same token, apply the Hadamard gate and the controlled-R3, R4 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ Rn gate to the
second qubit, outputting the state.

 1
22/2 (|0〉 + e2πi[0.x1x2…xn]|1〉) ⊗ (|0〉 + e2πi[0.x2x3…xn]|1〉) ⊗ |x3 … xn〉 (11)

Operate the rest of the qubits in the same manner. That is, generally, apply the Hadamard gate
and the controlled-Rm+1, Rm+2 through Rn gate to the m-th qubit. After applying all quantum
gates, it can be thus concluded that the final state that the circuit above produces is as follow.

1
2n/2 ��0〉 + e2πi[0.x1x2…xn]�1〉� ⊗ ��0〉 + e2πi[0.x2x3…xn]�1〉� ⊗ …⊗

��0〉 + e2πi[0.xn]�1〉� (12)

On the other hand, from the definition of QFT:

277

 UQFT(|x⟩) = 1
2𝑛𝑛/2 ∑ 𝑒𝑒2πi

𝑥𝑥𝑥𝑥
2𝑛𝑛|y⟩2𝑛𝑛−1

y=0

 = 1
2𝑛𝑛/2 ∑ 𝑒𝑒2πi

𝑥𝑥[𝑥𝑥1𝑥𝑥2…𝑥𝑥𝑛𝑛]
2𝑛𝑛 |𝑦𝑦1𝑦𝑦2. .𝑦𝑦𝑛𝑛⟩2𝑛𝑛−1

y=0

=
1

2𝑛𝑛/2 ∑ 𝑒𝑒2πi
𝑥𝑥[𝑥𝑥10…0]

2𝑛𝑛 |𝑦𝑦1⟩1
𝑦𝑦1=0 ⊗ ∑ 𝑒𝑒2πi

𝑥𝑥[0𝑥𝑥2…0]
2𝑛𝑛 |𝑦𝑦2⟩1

𝑦𝑦2=0 ⊗ …⊗

∑ 𝑒𝑒2πi
𝑥𝑥[0…0𝑥𝑥𝑛𝑛]

2𝑛𝑛 |𝑦𝑦𝑛𝑛⟩1
𝑦𝑦𝑛𝑛=0 (13)

Note that [𝑥𝑥1𝑥𝑥2...𝑥𝑥𝑛𝑛]∙[𝑦𝑦10…0]
2𝑛𝑛

= 𝑦𝑦1 ∙ [𝑥𝑥1 … 𝑥𝑥𝑛𝑛−2𝑥𝑥𝑛𝑛−1. 𝑥𝑥𝑛𝑛] and 𝑒𝑒2𝑖𝑖𝑖𝑖𝑦𝑦1∙[𝑥𝑥1…𝑥𝑥𝑛𝑛−2𝑥𝑥𝑛𝑛−1.𝑥𝑥𝑛𝑛] = 𝑒𝑒2𝑖𝑖𝑖𝑖𝑦𝑦1∙[0.𝑥𝑥𝑛𝑛].

UQFT(|x⟩) = 1
2n/2 ��0〉 + e2πi[0.xn]�1〉���0〉 + e2πi[0.x2x3…xn]�1〉� ⊗ …⊗ ��0〉 + e2πi[0.x1x2…xn]�1〉�

(14)
It seems that the order in (14) is reversed with respect to (7). However, the output should be read

from bottom to top, just It shows that the circuit in Figure 2 is indeed the circuit for QFT. Obviously,
QFT is a unitary transform because each gate in the circuit is unitary.

3.2 Implementation of QFT and IQFT [8]
The structure of IQFT is similar to QFT. One only needs to reverse the sequence of QTF and

replace each gate with its conjugate. This is because if 𝑄𝑄𝑄𝑄𝑄𝑄 = U1 … Un, where each Ui is an
individual gate, and QFT−1 = (𝑈𝑈1𝑈𝑈2. . .𝑈𝑈𝑛𝑛)−1 = Un

−1 … U1
−1 = Un

† … U1
†. IQFT for n = 3 is the right

half part of Figure .

Figure 3 QTF(IQFT(|x〉))= |x〉

Figure 4 Circuit for 4-qubit QFT

Figure 5 Result of 4-qubit QFT

278

Different colors stand for different phase from 0 to 2𝜋𝜋. As is shown Figure 5, when the input is
x=1, the output is a superposition of all 8 possible states which have the same amplitude, only differ
from adjacent states in phase by 𝜋𝜋 4⁄ .

4. Shor’s Algorithm [9]
Shor’s algorithm consists of two subroutines: the classical one and the quantum one. The

classical subroutine is operated on a traditional circuit while the quantum part works on a quantum
circuit, using the property of quantum superposition to drastically boost the computational speed.

4.1 Classical Subroutine
Suppose a large integer N is given to be factored. The classical circuit generates a random

integer 𝑎𝑎 < 𝑁𝑁 and calculates the great common divisor between a and N by the Euclidean
algorithm.

•If gcd(a, N) ≠ 1 , then gcd(a, N) is a non-trivial factor of N. The factorization is thus
completed.

•If gcd(a, N) = 1, a and N are coprime. Then use the quantum period-finding subroutine in
Figure to find the period p of the following equation

 𝑓𝑓(x) = ax mod 𝑁𝑁 (15)

which means ax+p = ax mod 𝑁𝑁 so ap ≡ 1 (mod N). According to Euler’s theorem, aφ(N) ≡
1(mod N), where a and N are coprime and 𝜑𝜑(N) denotes Euler’s totient function. So p is a factor
of or equal to 𝜑𝜑(N). For a = 7, N = 15, 𝜑𝜑(15) = 15 ⋅ (1 − 1/3)(1 − 1/5) = 8. It can be verified
that p = 4 is the least exponent of 7 to make 7p = 2401 ≡ 1 (mod 15). And 4 is indeed one factor of
8. For a = 13, N = 42, 𝜑𝜑(42) = 42 ⋅ (1 − 1/2)(1 − 1/3)(1 − 1/7) = 12. 132 = 169 ≡ 1 (mod
42). So p = 2 is the least exponent of 13 that satisfy 𝑓𝑓(𝑝𝑝) = 1. And 2 is unsurprisingly a factor of
12.

Rewrite this equation as 𝑁𝑁|(𝑎𝑎p − 1) = (𝑎𝑎𝑝𝑝/2 + 1)(𝑎𝑎𝑝𝑝/2 − 1) . So either �𝑎𝑎𝑝𝑝/2 + 1� or
�𝑎𝑎𝑝𝑝/2 − 1� is likely to contain the factors of N. If so,gcd�𝑎𝑎𝑝𝑝/2 + 1,𝑁𝑁� and gcd�𝑎𝑎𝑝𝑝/2 − 1,𝑁𝑁� are
the factors of N, and we are done.

However, the following two cases are exceptions. If the period p is odd, 𝑎𝑎𝑝𝑝/2 is not an integer.
Or if N|(𝑎𝑎𝑝𝑝/2 + 1) or N|(𝑎𝑎𝑝𝑝/2 − 1) , then gcd�𝑎𝑎𝑝𝑝/2 + 1, N� = N or gcd�𝑎𝑎𝑝𝑝/2 − 1, N� = N ,
which tells us nothing about the factors of N. In these two cases, another random number a will be
generated and the process above will iterate. Nevertheless, the probability of finding the number
which satisfies the previous two conditions is about 25%, not bad [6].

4.2 Quantum Subroutine (Period-Finding)

Figure 6 Circuit for Shor's Algorithm [12]

Figure 6 is composed of two registers: A and B. Suppose A contains q qubits, and B contains n
qubits. Denote 2q = Q. There are some conditions for q and n to meet. q should at least make Q − 1 >
2p. The reasons will become clear later (See Figure). 2𝑛𝑛 should at least be greater than N because

279

register B is used to store ax mod N, which has the multitude of N. Conveniently, as is shown in
Figure , q is chosen to be 2n to guarantee Q − 1 > 2p since the period p is always less than N.

First, implement n Hadamard gates on register A. To see the results, recall the Hadamard gate on
a single qubit:

 𝐻𝐻(|0⟩) = 1
√2

(|0⟩ + |1⟩) (16)

It converts |0⟩ to a superposition of all possible states with the same amplitude. Hadamard gates
on q qubits are similar, transforming the initial state into all possible states with the same amplitude.
So, at position 1,

 |𝜓𝜓1⟩ = 𝑈𝑈𝐻𝐻⊗𝑞𝑞(0𝑞𝑞,  0𝑛𝑛⟩) = 1
�𝑄𝑄
∑ |𝑥𝑥,  0⟩𝑄𝑄−1
𝑥𝑥=0 (17)

Uf gate is built as follow.

 𝑈𝑈𝑓𝑓(|𝑥𝑥,  0⟩) = |𝑥𝑥,  f(x)⟩ (18)

where f(x) = ax mod N. We can see Uf is dependent on specific a and N. Implement Uf to
register B. So at position 2.

 |𝜓𝜓2〉 = Uf(|𝜓𝜓1〉) = 1
�Q
∑ |x, f(x)〉Q−1
x=0 (19)

Where f(x) = 𝑎𝑎𝑥𝑥 𝑚𝑚𝑟𝑟𝑚𝑚 𝑁𝑁. Unluckily, the specific design of Uf is contingent on the specific a
and N, which means we have to redesign or adjust the whole structure on register B every time a
new set of (a, N) is given. This unsatisfactory fact is the bottleneck to Shor’s algorithm. But instead
of getting bogged down in the specific structure of Uf, nor the method to adjust the circuit, let’s just
assume Uf has been constructed a priori.

Apply an IQFT to |ψ2⟩. So at position 3,

 |𝜓𝜓3〉 = 𝑈𝑈IQF𝑇𝑇−1(|𝜓𝜓2〉) = 1
Q
∑ ∑ 𝜔𝜔−𝑥𝑥𝑦𝑦|y, f(x)〉Q−1

y=0
Q−1
x=0 (20)

Substitute z for f(x), where all possible z’s constitute a subset S of 𝑍𝑍𝑁𝑁∗ = {1, 2 , . . . , N − 1}. For
simplicity, let z runs from 0 to N-1. If it falls into S, ∑ 𝜔𝜔−𝑥𝑥𝑦𝑦

𝑥𝑥;f(𝑥𝑥)=𝑧𝑧 is nonzero; otherwise,
∑ 𝜔𝜔−𝑥𝑥𝑦𝑦
𝑥𝑥;f(𝑥𝑥)=𝑧𝑧 = 0.

 |𝜓𝜓3〉 = 1
Q
∑ ∑ �∑ 𝜔𝜔−𝑥𝑥𝑦𝑦

𝑥𝑥;f(𝑥𝑥)=𝑧𝑧 � |y, z〉Q−1
y=0

𝑁𝑁−1
z=0 (21)

The probability of observing the state |y, z⟩ is

 𝑃𝑃(|y, z〉) = �1
Q
∑ 𝜔𝜔−𝑥𝑥𝑦𝑦
𝑥𝑥;f(𝑥𝑥)=𝑧𝑧 �

2
 (22)

P(|y, z〉) is the conditional probability of measuring state |y⟩ in the register A, given that |z⟩ in
the register B was observed. It implies that |z⟩ must be measured before |y⟩. Then the wavefunction
in register B collapsed from a superposition of all possible |z⟩ states into a certain |z⟩. Due to the
entanglement established by 𝑈𝑈𝑓𝑓 between register A and register B, the probability of measuring
register A is consequently changed [10]. In reality, the circuit in Figure is connected to classical
circuit at both ends, so we do not have to measure which state will |z⟩ will turn out to be in register
B. Recall that p is the period of f(x), so x = x0 + np, where x0 is the first integer that makes f(x)=z,
and n = 0, 1, 2, ...m – 1, where m is the upper bound for n. Since Q is usually much larger than p, m
is roughly estimated as Q/p for every possible z falling into the set S.

𝑃𝑃(|y, z〉) = �1
Q
∑ 𝜔𝜔−𝑥𝑥𝑦𝑦
𝑥𝑥;f(𝑥𝑥)=𝑧𝑧 �

2
= 1

Q2
�∑ 𝜔𝜔−(𝑥𝑥0+𝑛𝑛𝑝𝑝)𝑦𝑦𝑚𝑚−1

𝑛𝑛=0 �
2

= 1
Q2
�
sin�πmpy

Q �

sin�πpyQ �
�
2

 (23)

If y happens to make 𝑝𝑝𝑦𝑦
𝑄𝑄

 close to an integer, namely 𝜔𝜔
𝑝𝑝𝑥𝑥
𝑄𝑄 is close to 1, which leads to

280

constructive interference, P r(|y, z⟩) is significantly larger than otherwise. Denote 𝑝𝑝𝑦𝑦
𝑄𝑄

 as s, and
consider

 𝑃𝑃(𝑠𝑠) = �𝑠𝑠𝑖𝑖𝑛𝑛(𝑚𝑚𝑖𝑖𝑠𝑠)
𝑚𝑚 𝑠𝑠𝑖𝑖𝑛𝑛(𝑖𝑖𝑠𝑠)

�
2

 (24)

As is shown in Figure 7, it’s better to make q sufficiently large. That’s because as m ∼ Q/p
approaches to infinity, P(s) approaches to

 ∑ 𝛿𝛿i,si=∞
i=−∞ (25)

It becomes nearly impossible to find s = 𝑝𝑝𝑦𝑦
𝑄𝑄

 between any two adjacent peaks because s is not

close to an integer then. Thus we can calculate p = 𝑄𝑄
∆𝑦𝑦

, where ∆y is the minimal positive period of
y measured in register A.

Figure 7 𝑃𝑃(z) = �sin(mπs)
msin(πs)

�
2

In summary, Uf gate selects the x that make f(x) =a certain z. They are the very x that are put in
the IQFT. Note that x’s are separated by a constant value p, and the IQFT detects the periods of the
input states. Accordingly, the measurement of the output will reflect the periodicity of the input by
showing yet another periodicity. We can utilize the period of the measurement in the output to
deduce the period of the input.

4.3 The procedure of Shor’s Algorithm
To wrap up, Shor’s algorithm is composed of two parts: the classical subroutine and the quantum

subroutine. The flowchart is summarized in Figure 8.

281

Figure 8 Procedure of Shor's Algorithm

5. Experimental Results [8]
5.1 Case 1: N=15, a=7 [11]

The circuit for Shor’s algorithm is designed as Figure 9. Qubits 0-2 form register A; qubits 3-6
form register B.

Figure 9 N=15, a=7, IQFT

Denote 𝑥𝑥 = [0. x1x2x3]. 7x ≡ 74x1 ∙ 72x2 ∙ 7x3 mod N. Calculate.

 �
74 ≡ 1 mod 15
72 ≡ 4 mod 15
71 ≡ 7 mod 15

 (26)

282

As a result, the first qubit q[0] does not make a difference in the output of 𝑈𝑈𝑓𝑓 because whether
or not q[0] is 0, register B remains the same. Consider the situation below:

x = 1 (q[0] = 0, q[1] = 0, q[2] = 1)
x = 2 (q[0] = 0, q[1] = 1, q[2] = 0)
x = 3 (q[0] = 0, q[1] = 1, q[2] = 1)
The outputs should be 1, 4, 7 for each, which match with the experiment results shown in Figure ,

Figure and Figure 12. Keep in mind that the output should be counted bottom up, which means
the largest digit is at the bottom and the smallest digit is at the top, the reverse of the input.

Figure 10 x=1

Figure 11 f(x) = 7

Figure 12 x = 2

283

Figure 13 f(x) = 4

Figure 14 x = 3

Figure 15 f(x) = 13

Figure 16 The period of y is 2

As is shown in Figure 16, 𝑄𝑄𝑦𝑦 = 2 , 𝑄𝑄 = 8 , then 𝑝𝑝 = 𝑄𝑄
𝑇𝑇𝑥𝑥

= 4 . gcd(7
4
2 − 1, 15) = 3 , and

gcd(7
4
2 + 1, 15) = 5. So 15=3 × 5.

Indeed, Building the Uf gate is one of the difficulties of realizing Shor’s algorithm for different

284

large integer N. There is no general Uf gate that can be applied universally, which means that the
circuits above are limited to the case a = 7 and N = 15.

5.2 Case 2: N=15, a=11
In Figure , register A includes q[0-1], and register B includes q[2 - 4].

Figure 17 N=15, a=11

Figure 18 Output of a = 11, N=15

As is shown in Figure 18, 𝑄𝑄𝑦𝑦 = 2, 𝑄𝑄 = 8, p= Q
Ty

= 4, Ty = 2,𝑄𝑄 = 8.𝑝𝑝 = Q
Ty

= 4. gcd(72 −

1,15) = 3, and gcd(72 + 1,15) = 5. So 15=3 × 5.

6. Conclusion
Based on quantum Fourier transform and modular exponentiation, Shor’s algorithm operated on

a quantum computer is exceedingly efficient in factoring large integers than the classical algorithm.
Despite the intricacy and annoyance of adjusting modular exponentiation gate (𝑈𝑈𝑓𝑓) whenever a new
set of (a, N) is fed in, Shor’s algorithm is feasible on quantum computers, at least for the case (a, N)
= (7, 15) and case (a, N) = (11, 15), which are verified on IBM Q. It is promising that a general
method of designing the modular exponentiation could be invented so that the circuit can be
modified according to any given set of (a, N). If so, the classical method of encryption will be in
jeopardy.

References
[1] G. Benenti, G. Casati and G. Strini, Principles of quantum computation and information

285

https://quantum-computing.ibm.com/

(Reprinted. ed.), World Scientific, 2004.
[2] M. Ettinger and P. Høyer, A quantum observable for the graph isomorphism problem,
arXiv:quant-ph/9901029.
[3] D. Beckman, A. N. Chari, S. Devabhaktuni and J. Preskill, "Efficient Networks for Quantum
Factoring," Physical Review A, p. 54 (2): 1034–1063, 1996.
[4] "Wolfram Mathworld," 23 October 2015. [Online]. Available:
https://mathworld.wolfram.com/NumberFieldSieve.html.
[5] S. &. P. S. Burnett, The RSA security's official guide to cryptography, McGraw-Hill, Inc., 2001.
[6] N. D. Mermin, Quantum computer science: an introduction, Cambridge University Press, 2007.
[7] Trenar3, 14 February 2018. [Online]. Available:
https://en.wikipedia.org/wiki/File:Q_fourier_nqubits.png.
[8] IBM, [Online]. Available: https://www.ibm.com/quantum-computing/.
[9] S. J. Lomonaco, Shor's quantum factoring algorithm. In Proceedings of Symposia in Applied
Mathematics (Vol. 58, pp. 161-180), 2002.
[10] V. M. &. M. W. J. Kendon, "Entanglement and its role in Shor's algorithm," arXiv preprint
quant-ph/0412140, 2004.
[11] L. M. S. M. B. G. Y. C. S. S. M. H. &. C. I. L. Vandersypen, "Experimental realization of
Shor's quantum factoring algorithm using nuclear magnetic resonance," Nature, 414(6866), pp.
883--887, 2001.
[12] B. 2k14, 29 July 2014. [Online]. Available:
https://commons.wikimedia.org/wiki/File:Shor%27s_algorithm.svg.

286

https://mathworld.wolfram.com/NumberFieldSieve.html
https://en.wikipedia.org/wiki/File:Q_fourier_nqubits.png
https://www.ibm.com/quantum-computing/

	1. Introduction
	2. QFT and IQFT
	3. Realization of QFT and IQFT on IBMQ
	3.1 Design of QFT [6]
	3.2 Implementation of QFT and IQFT [8]

	4. Shor’s Algorithm [9]
	4.1 Classical Subroutine
	4.2 Quantum Subroutine (Period-Finding)
	4.3 The procedure of Shor’s Algorithm

	5. Experimental Results [8]
	5.1 Case 1: N=15, a=7 [11]
	5.2 Case 2: N=15, a=11

	6. Conclusion
	References

